

Reflections on RI's Water Quality

Linda Green & Elizabeth Herron URI Watershed Watch RI Land and Water Summit March 9, 2013

Presentation Overview

- URI Watershed Watch overview
- Limno-oceanology in 10 minutes
- 25 years of results on >500 sites in 15 minutes
- Harmful algal blooms (HABs)-cyanobacteria
- Aquatic Invasives (AIS) plant focus
- Questions

Linda Green, 874-2905, Igreen@uri.edu Elizabeth Herron, 874-4552, emh@uri.edu

Essential Ingredients

- science-based
- involve local organizations & the public
- educational, not regulatory
- provide good, useful information
- cost effective (stable funding)

an ecological monitoring program, to note conditions and track trends

Program Sponsors

- Lake/watershed Associations
- Municipalities (NK)
- Narragansett Indian Tribe
- Environmental Organizations (STB)
- Sporting Organizations (TU)
- Fire Districts
- Businesses (QDC, RIAC)
- Hurley Endowment
- Sharpe Family Foundation

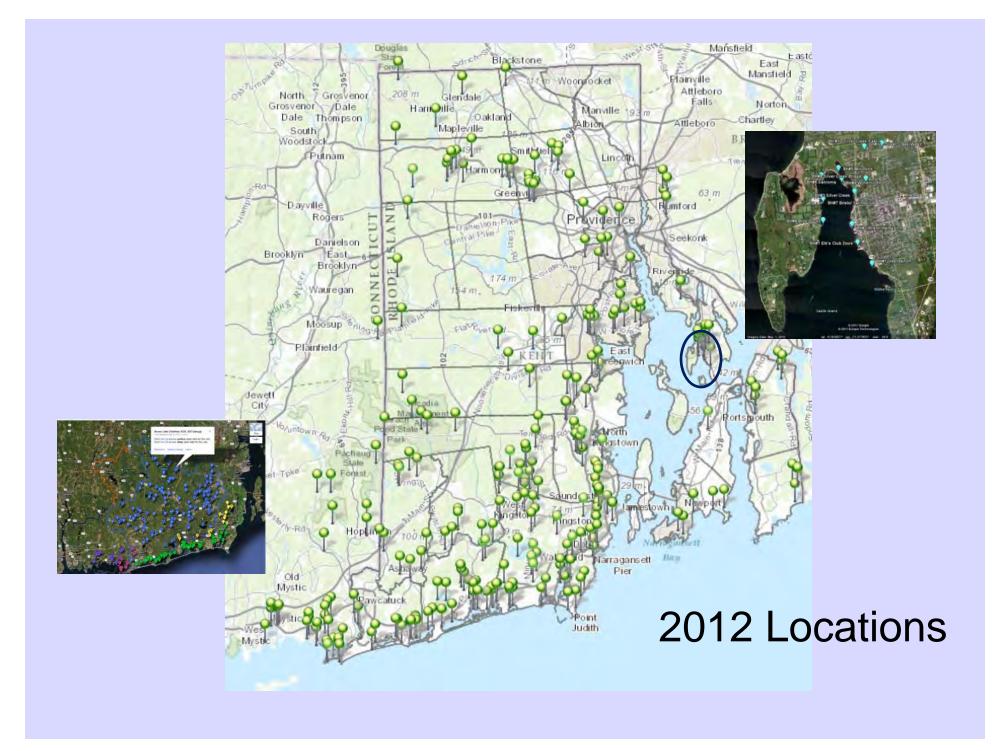
Lots of Great Volunteers!

400+ currently


- all ages
- varied backgrounds
- no experience A-OK
- WW provides training, supplies
- time commitment (1 season to life)

boat (some sites)

Credibility doesn't mean having the most exacting techniques. It means delivering on your promises, no matter how small or large they are.

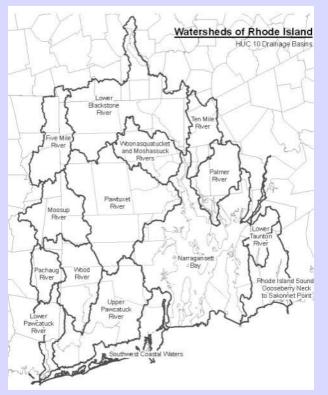

-Meg Kerr RI River Rescue

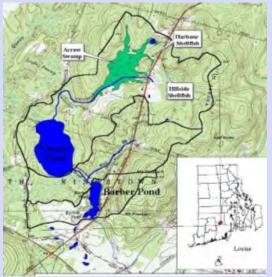
Nearly 550 sites have been monitored since 1988

246 sites in 2012

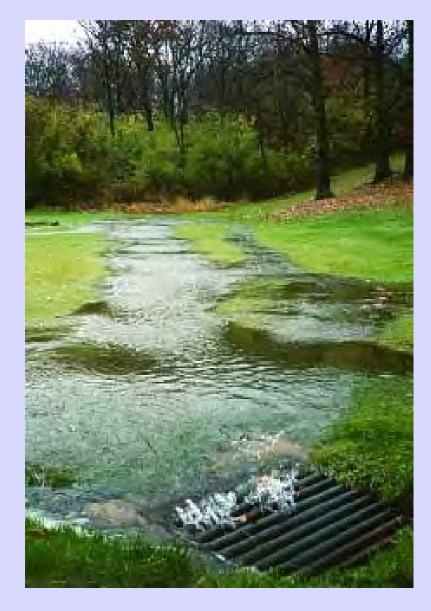
- 60 Lakes & ponds
- 106 Rivers & streams
- 14 Surfing sites
- 66 Salt & estuarine sites

WATER QUALITY IS PARTLY A REFLECTION OF THE ACTIVITIES IN THE LANDS AND WATERS SURROUNDING AND LYING UPSTREAM





What's going on in your watershed?



Rainfall Amount **Distribution**

Non-point Source Pollution

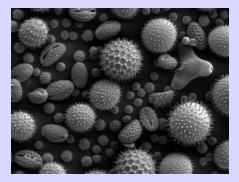
The #1 water quality problem in the U.S.

From URI NEMO program

Particulates Storm Runoff sediments organic matter

Discharge to waterways... nutrients, pesticides, adsorbed to above

Bacterial contamination



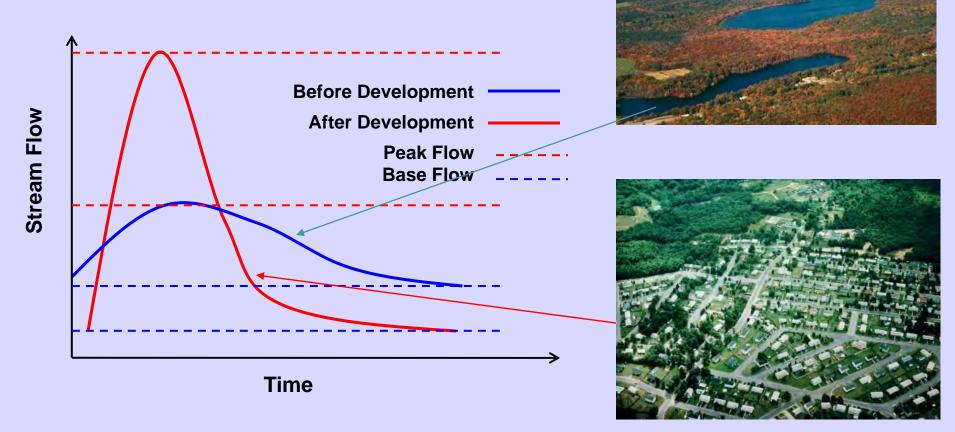
Airborne particulates

✤ dust✤ pollen

Wastewater discharges



Residential lawn and gardens


GOLLY, MA, LOOK WHAT CRAWLED OUT OF THE STORM DRAIN!

AW, YOUR FATHER'S BEEN OVERSPREADING FERTILIZER AGAIN!

Effect of Development on Stream Flow

Storm Hydrograph of Stream Flow Before and After Development

Accumulation

- Nutrients
- Sediment
- Organic Material
 - Decaying plants, algae etc.
 - Leaves

Presentation Overview

- URI Watershed Watch overview
- Limno-oceanology
- 25 years of results
- Harmful algal blooms (HABs)
- Aquatic Invasives (AIS) plant focus
- Questions

Limno-oceanology: Scientific study of water ecosystems

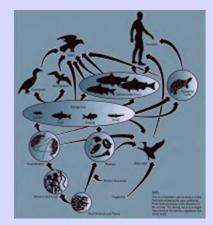
Freshwater wetlands Rivers & streams

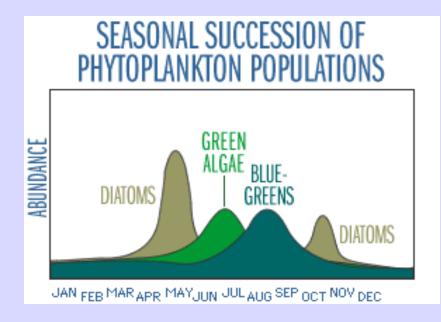
Lakes &

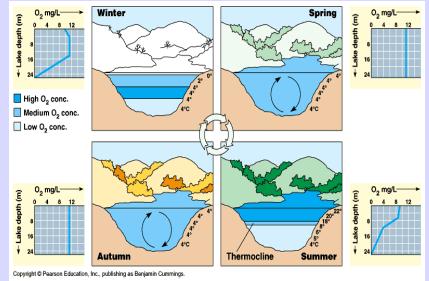
Groundwater

Estuaries

Salt ponds


wetlands


Coastal

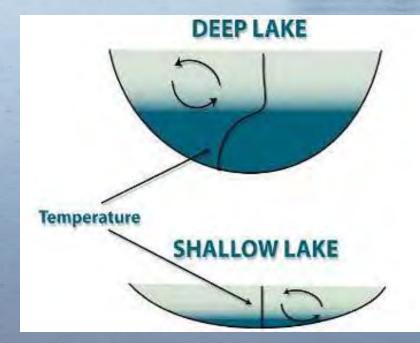

Marine

Water quality also reflects in-water processes: biology, chemistry, physics

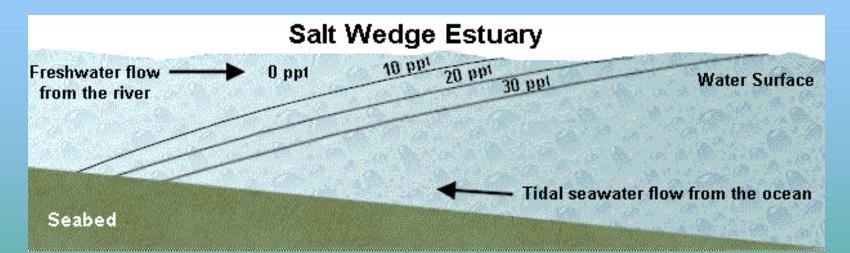
http://www.epa.gov/greatlakes/atlas/glat-ch2.htm

...and its history

- Geology, soils
- Chemical constituents
- Surface area
- Watershed area
- Shape
- Retention/residence time

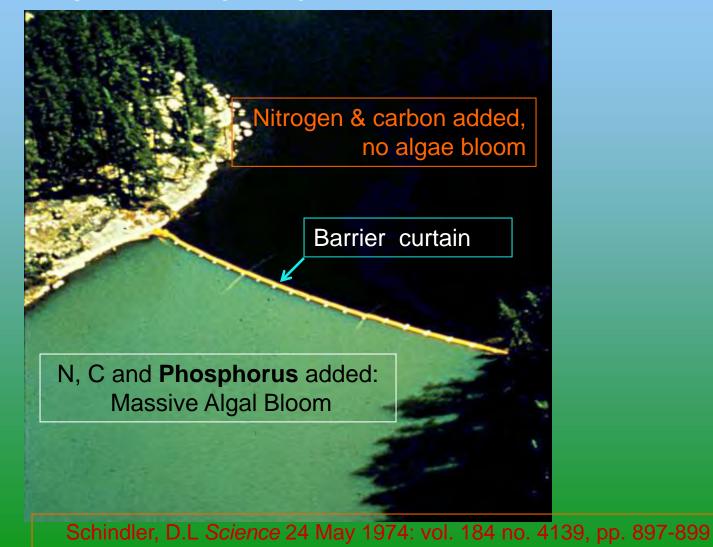

Temperature

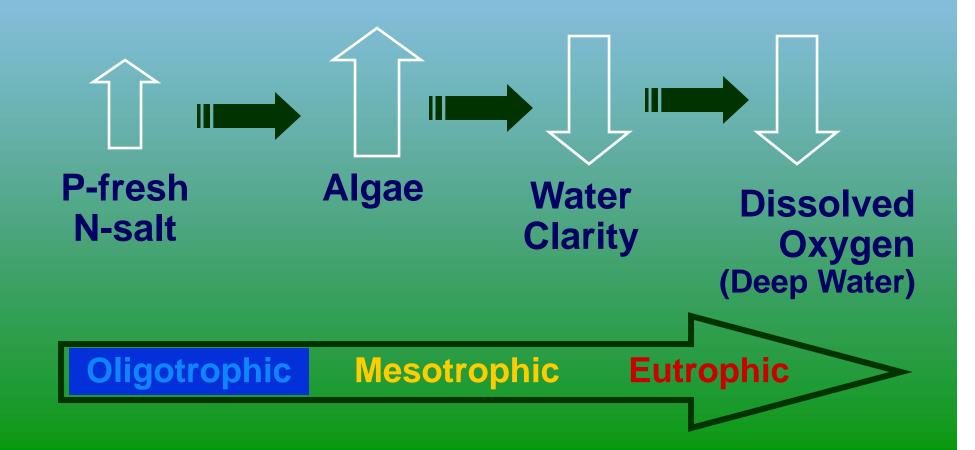
Affects: Water density Gas solubility Dissolved Oxygen Chemical reaction rates Organism growth rates Conductivity DH


Lake vs Pond (Pay no attention to the name)

Lakes stratify:

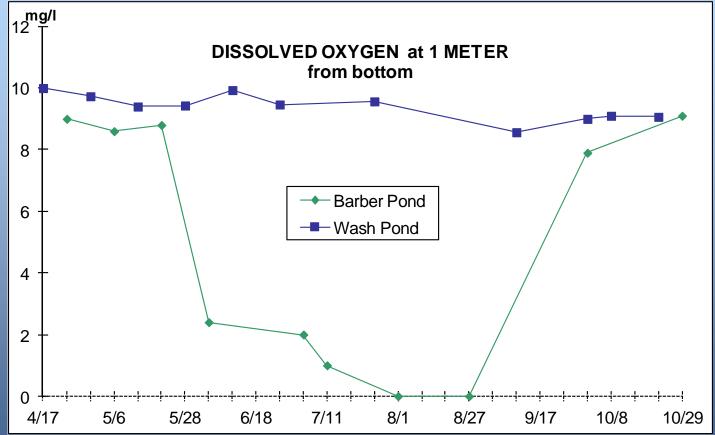
- Light not visible to the bottom
- Deep enough for summer stratification(>5m or 15ft)
- Dissolved oxygen depletion in the bottom (low to no)
- Ponds stay mixed:
 - Light visible to bottom
 - Transient stratification
 - Nutrients recycle
 - Less than 5-7 m deep


Estuarine Stratification


Salt water is denser than freshwater

PHOSPHORUS LIMITATION Famous Experiment (1974): Canadian Lake 226

Increase in nutrient enrichment = Eutrophication



Dissolved Oxygen

With No Oxygen in Deep Water (Anoxia)

Algae die and fall to bottom
Organic matter decomposed
Phosphorus cycles back into water, available for algae to use

Water Quality Indicators

We measure:

- Secchi Depth
- Chlorophyll
- Phosphorus & nitrogen
- D.O. & temp.
- Bacteria

– Algae

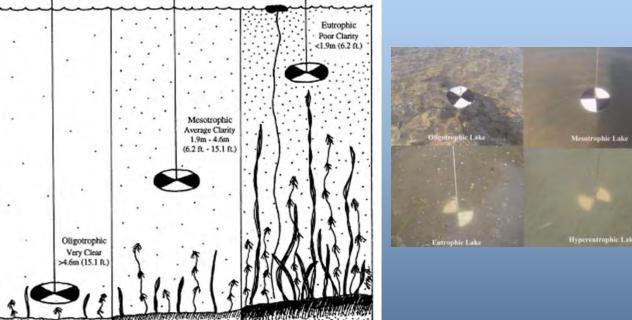
To indicate:

Nutrient levels

Water clarity

Aquatic healthSafe for swimming

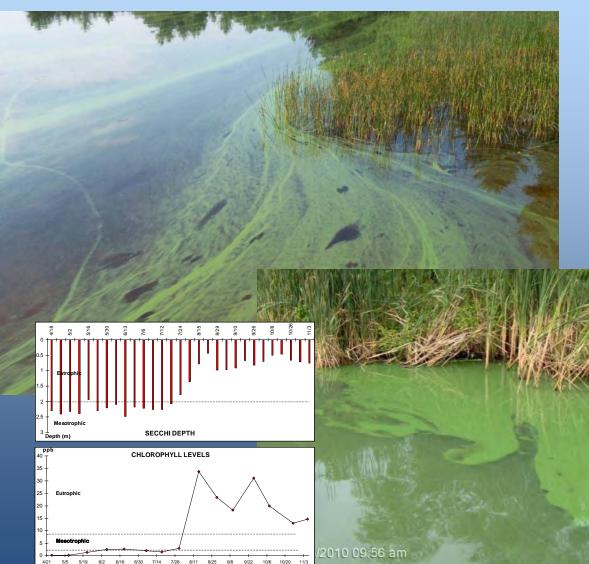
Monitoring Supplies

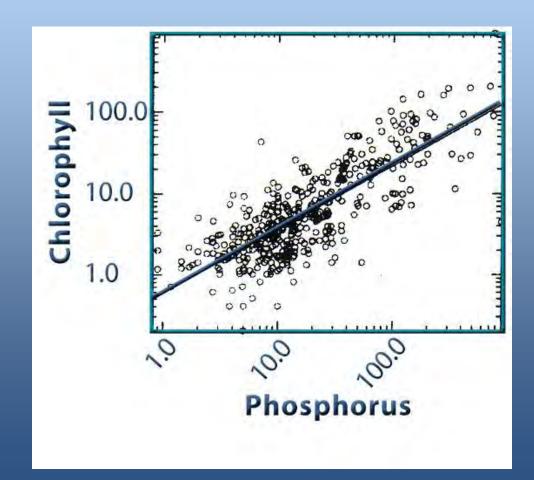

- Monitoring Manual
- Secchi Disk and View Tube (lakes & ponds)
- Postcards (on-line data entry available)
- Deep or Shallow Sampler
- Sample Bottles
- Chlorophyll Supplies kits
- Thermometer
- Dissolved Oxygen Kit
- Salinity refractometer

After classroom & field training and everyone monitors multiple indicators weekly, biweekly, monthly, May-October

Secchi Disk, the world's most widely used monitoring instrument

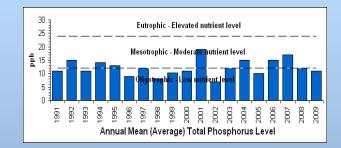
Nearly 1 million Secchi readings 1903-present collected by Canfield & Carlson Shallowest ~1" Deepest 41.2m Crater Lake (Tahoe deeper)





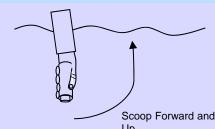
Document Algal Blooms

Total Phosphorus/ Chlorophyll-a Relationship


- Phosphorus causes algae to grow
- Chlorophyll
 levels indicate
 algal biomass
- Parts per billion
 = BIG changes

Analyzing for N & P

2011 Parameter Data Total Prosphorus in Lakes, Fornts, and Reservoirs


Salard.		Barren	(mange	n edula	righted	Putkin	tons Ph	eghe.	(b),a		EAN
cede:	LOCATION	Depth	MAY	-		auri	SEPT	007	MEAN		STATUS
_	- Exercision	100					-0.40				
Œ	Airy Ford	-	lim.	1.00	747	-	-	57	\$75	79	
WD	Altan Fond		*		15			- 24	79	47	
A	Americantucket 180 Pond	05	100	- 24	- 54	- 15	- 95-	.25	21		
5	Ann Pont	1	12	1.4	30	1.00	1.4	- 10	20		
Y/D	Batter Post	1.1	10		73	-		18	71		M
WD.	Easter Porst	45	15	14	21		- 64	15	13	41	
THE	Date: Date:	10	14	-	4	-	7	- 5		x	0
TH	Beach Pand	58	-4		- 6		10	10	7	22	0
Α.	Estimate Pond - Lover	Y	10	21	3	-	-		24	36	M
A	Balinville Frond - Lippin	05	825	1.00	22		-	77	23	-8	м
704	Billips Late (CT)	1	1.41		7	-	=	11	10	x	0
TH	Blings Lake (CT)	7.	1.4		13	1.0	-8	13	12	40	0
100	BatanoePorc	T.	12		2	-	-	10		15	F
TH	Bie Lake (CT)		10		2			15	17	45	M
WD.	Borelas	1	120		18	21	17	190	10	-	
WD.	Econe Lake	425	1.4.7		19	22	16	2	79	47	м
TH	Ibide Remon	1	1.00			-		-	-		0
CA)	Bull end Fond	- T -	.9	- 1÷	38	140	÷	- 24	57	45	M
TH.	Catavoie-Porst	1.1	1	1.0	1.0	100	-	18	T	40	0
TH	Cadurein Peret	6.5	27		19		~	22	23	45	88
PE	Call Part (NO	- 1	12	-	31		12	19	21	4	M
吨	Carr Ponti (NR)	-45	1.00				23	- 17	20	47	M
PA	Car Pont/MG	7	191	-	10	100	1	Ŧ	7	2	0
PA.	Cair Fond (VIC)	. 9	-4		15	-	12	- 9	40	37	0
N.	Central Pont	T-1	1027				100		-	14	-

Bacteria Results

Up

2012 Bacteria Data - Rivers and Streams Enterococci Data

RI Department of Health standards for recreational contact (i.e.swimming): Fresh Waters - Single sample not to exceed 61 enterococci per 100 mL. RI Department of Environmental Management Enterococci Standards: Non-designated Bathing Beach (Fresh) Waters Geometric Mean Density - Not to exceed 54 enterococci per 100 mL.

Designated Bathing Beach (Fresh) Waters Geometric Mean Density - Not to exceed 33 enterococci per 100 mL.

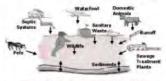
Watershed code	MONITORING LOCATION	MAY	JUNE	JULY	AUG.	SEPT	OCT	GEOMEAN
			Most Pro	bable Num	ber of En	terococci p	per 100 ml	
A	Annaquatucket - Belleville @ RR Xing	7.32.4	165.8	150	60	274 8	84.6	141.6
NA	Buckeye Brook #1 @ Novelty Rd	82	6970	487	284	146	132	339.3
NA.	Buckeye Brook #2 @ Lockwood Brk	185	857	1632.8	775	583	96	473.2
NA	Buckeye Brook #3 @ Warner Brook	170	3640	60	-		-	333.6
NA	Buckeye Brook #4 @ Mill Cove	-	6240	4155	498	435	-	1539.3
WD	Falls River D - Step Stone	22	31.2	285.1	66	59.8	69.7	61.4
WD	Falls River C - Austin Farm	14.8	58.3	144.5	118	117.9	30.6	63.0
WD	Falls River B - Sand Banks	29.2	75.4	200.5	201	95.9	22.2	75.7
WD	Falls River A - Twin Bridges	19.6	109.1	94.5	101	98.7	15	55.6
GB	GB #2 - Burger King	31	>2419.6	157.2	3106	399	17329	>795
GB	GB #3 - Pipe @ Rte 115	62	>2419.6	80.4	27	'41	19863	-253
GB	GB #4 - Mill Creek	52	>401	448	394	272	1091	>320
GB	GB #5 - Hardig Upstream	63	3465.8	788.6	345	788	8664	501.1
GB	GB #6 - Tuscatucket Br	20.8	194.8	96.4	<2	30	47.2	21.9
GB.	GB #7 - Southern Creek	132	1511.2	813	192	187	9804	820.4
A	Himes River	4	147.6	278.8	48.6	73,6	1918	102.0
Н	HW #1A - Scrabbletown Brk @ Fails	12.6	83.1	251.8	120.4	186	1553	144.7
н	HW #1B - Scrabbletown @ Rte 4 Bridge	16.8	118.4	90,4	59	90	19865	163.3
H.	HW #5 - Sandhill Brook (Saw Mill Inlet)	67	201.4	471.6	333	112	2005	275.8
н	HW #6 - Hunt River @ Forge Rd.	85	123.6	90.4	63	81	75	84.4
TH	Moosup Upstream	20	1445	100	551	1317	-24196	>608
TH	Moosup A - Fairbanks Bridge	40.2	1445	112.6	48	144.6	19863	310.4
TH	Moosup C - Deerfield Drive	21.8	885	91.4	51	76,5	1301	193.7
Watershed code	MONITORING LOCATION	MAY	JUNE	JULY	AUG.	SEPT	OCT	GEOMEAN
	Click here for Narrow River enterococci a	nd fecal i			nber of En	terococci p	per 100 ml	L
LA/D	Descention Doine @ Descented	21.8	64.0	11.4 15	18.4	21.6	70.0	70 E

WD	Pawcatuck River @ Bradford	21.6	54.8	T14.6	18.4	216	79,8	39.5
PA	Pawtuxet River - near Rhodes	97	840	94	43.6	10	32	68.9
WD	Queen River @ Locke Brk	6.2	-	40.6	-	-		15.9
WD	Queen River @ Sherman Brk	<2	118.4	1454	215.2	143.4		63.9
WD	Shickasheen Brook @ Rte 2	135,4	DRY	DRY	26.8	48.4	4839	170.7
WD	Shickasheen @ Miskiania Road	11.9	22.2	437.4	167.8	-	10	45.B
WD	Shickasheen @ Barber Pond Outlet	109.1	4.2	3.1	8.7	25.3	<2	6,3
WD	Shickasheen Brook @ Rte 138	74.6	200.5	176	50	258	31	101
WD	Shickasheen Brook @ Liberty Lane	432	47.8	215.4	64,6	95,4	73	76.6

Page 1 of 2

Paired with factsheets

THE UNIVERSITY Bacterial Monitoring OF RHODE ISLAND UNI WATERSHED WATCH, Cooperative Extension College of the Environment and Ulto Sciences (CELS) COLLEGE OF THE ENVIRONMENT AND THE SCIENCES


Department of Natural Resources Science (MRS) Coastal Institute in Kingston, 1 Greenhouse Roed, Ringston, Rhode Island 02881-0804 Elizabeth Henon, Kelly Addy and Linda Green

Why Monitor Bacteria?

is it safe to swim in the water? That's a question we often hear when we say we are monitoring a favorite swimming spot Researchers and regulatory agencies have determined that one way to answer that question is to conduct bacterial monitoring. They do this to identify the human health risk associated with recreational water contact. The bacteria selected for water quality monitoring rarely cause human illness directly. rather the presence of these bacteria indicates that fecal contamination may have occurred and pathogens may be present in the water. Pathogens are microorganisms that cause illnesses; they may be viruses, bacteria or protozoana. Measuring pethogens, such as giardia, cryptosporidium, and Norwalk virus, directly is expensive and impractical because

- · There are innumerable types of pathogens that may be in waterbodies; it would be impossible to check for all these pathogens.
- · The presence of one pathogen may not indicate presence of others
- · Generally, simple laboratory techniques do not exist to measure pathogens.

Bacterial monitoring is a practical method to determine the potential health risk of water exposure. Bacteria are microscopic, single-celled organisms that can be found in virtually any environment. Bacterial indicators of pollution are the species found in the intestines of warmblooded animals, including humans, where many pathogens also originate. Indicator bacteria in a waterway come from many sources (Figure 1), e.g. animal droppings, faulty or leaking septic of sewage systems, combined sewage overflows (CSOs, see Box 1), stormwater runoff, boat sanitary waste and disturbed sediments

URIWW-3, March 2003 (updated May 2030)

Figure 1. Fotorts - courses of fourteeur la + waterteau (mon Ex. 1997)

What bacterial indicators are monitored?

Bacterial indicators should meet as many of the criteria listed in Box 2 as possible to ensure safe swimming water. Water quality monitors screen water samples most frequently for fecal coliform (F.C.) Encherichia coli or enterococci as bacterial indicators (see Box 3 for details). These indicators are prevalent in the intestines of warmblooded animals and associated with fecal contamination. Total coliforms are a group of closely related bacteria. fecal coliforms are a subgroup of total coliforms and E. coli are a specific species of F.C. bacteria (Figure 2). Enterococci are another group of bacteria unrelated to the coliforms.

Box 1: Combined Sevage Overflows (CSOs)

Combined Service Overnow systeme carry storm wate from raidways and unifested service from home an tumnester in the same ppm. On a dily day, all this works water in treated by the sewage treatment plant However, on vary ramy days, the televage, triantminist plant may not be able to treat all the water and way need to come some writested warm writer nto waterwrite. CSO control plans are in progress in the Providence area is mannes that a real significant Names wat Be

Posted online ASAP

Field monitoring postcards -saved forever!

DATE MONITORED: 07/25/10 (mo/day/yr/		IE: 0800 (mili	-	
SECCHI DEPTH (measure 4 times):			meters	
DEPTH TO BOTTOM:3 met	nd FROZEN	ves or n		
DEPTH MONITORED (meters)			_ <u>2.5</u> m deep	m
WATER TEMPERATURE (deg. C)		28	28	25
DISSOLVED OXYGEN (mg/L) (Measure twice at each depth)	N/A	8.0 8.0	4.3¦4.2 ¦	4.4¦4.1 ¦
SALINITY (ppt)	N/A	31	31	31
(for below, <u>circle best description</u> , see monit LIGHT: <u>1= Distinct shadows</u> <u>2= N</u> WIND: 0= Calm <u>1= Light</u> <u>2= G</u> RAIN W/IN 48 Hrs. <u>1= None</u> 2= L	o shadows	s 3: 3= Mode	= Very overcas rate 4= Stron	g

(a mere 38,000+ since 1988)

Presentation Overview

- URI Watershed Watch overview
- Limno-oceanology
- 25 years of results
- Harmful algal blooms (HABs)
- Aquatic Invasives (AIS) plant focus
- Questions

